If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+9w+4=0
a = 4; b = 9; c = +4;
Δ = b2-4ac
Δ = 92-4·4·4
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{17}}{2*4}=\frac{-9-\sqrt{17}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{17}}{2*4}=\frac{-9+\sqrt{17}}{8} $
| 3(x+8)-2x=18 | | 7x-44+40=180 | | 10x-11+43=8x-20 | | y-14.4=-20.5 | | x/2+10=7 | | 6x-2+x=90 | | 73-4x=26 | | -7.3-z=-21.3 | | 20k+4+33k-9=0 | | x-14.4=-15.25 | | 3x/5=3.5 | | 5-8n=165 | | 21=-7-2b | | (8x+78)-(2x+114)=0 | | 9y^2-2y-8=0 | | 5.2b=-5.76+4.9b | | 6z+7=3z-48 | | r÷5.5=18. | | -8y+9+5y=-21 | | x/(-3)+12=5 | | y-9.4=17.52 | | -7u+4(u-3)=-21 | | 1+n/9=0 | | 9w^2+w-6=0 | | (8x+36)-(5x+60)=0 | | (8x+36)-(5x+60)=90 | | x+3.3=4.9 | | 3.2(x+10)=76.8 | | 6p²+7p=2 | | 2w^2-9w+3=0 | | (8x+36)+(5x+60)=180 | | a+45.6=73.2 |